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MATH AND ART ARE TWO SIDES OF THE SAME COIN. I like to 
think of math as a way of mapping reality, of abstracting certain 
essential features of the world we experience and specifying how 
they interconnect. We begin to learn math as infants. Crawling 
across the floor, we observe that some objects are close—
reachable in a small number of movements—while others are 
distant, requiring many movements. The concept of closeness is 
fundamental to a branch of math called topology, and topology 
in turn provides the foundation for calculus, the discipline that 
studies change, models dynamic physical phenomena, and also 
allows us to calculate the lengths, areas, or volumes of all sorts of 
geometric objects. Thus math becomes part of the personal map 
of reality we all construct—usually unconsciously—as we move 
through life, collecting data and figuring out how it all fits 
together.

Art starts to happen when we project these personal maps back 
out on the world. Each of us has an impulse to express his or her 
experience of reality. At the most mundane level, we do so through 
things like conversation, writing, dress, cooking, or doodling on 
napkins. But when this projecting of personal maps becomes more 
deliberate, more conscious, we begin to produce what is ordinarily 

called art—painting, music, literature, and so on.
I have spent much of my life trying to become conscious 

of both processes—the mapping that gives rise to mathemat-
ics and the projecting that gives rise to art. As a college math 
instructor, I have to explain abstract concepts as vividly and 
concretely as possible. As a maker of mathematically inspired 
art—paintings, drawings, and, lately, sculptures—I attempt to 
translate my understanding of math into visual forms that mean 
something on an aesthetic level. As it happens, the two occupa-
tions reinforce each other.

My art usually begins with a mathematical idea I find intrigu-
ing. To make sure I understand it, I work out the steps of the con-
struction or the proof of the proposition—these often appear as 
handwritten notes in the background of my paintings. As I pore 
over the mathematical details, a mental image emerges, and when 
it becomes clear, I’m ready to paint. Just as sketching a person 
gives me a deeper understanding of the sitter, painting a math-
ematical concept gives me a deeper knowledge of the math.

Math and art converged for me when I was an undergrad-
uate at Tufts. For much of my teens, I hung out in New York 
galleries and museums, where I gravitated to abstract painters 
like Rothko and Pollock. I had a vague sense that I wanted to 
become such a painter myself, but I couldn’t escape the feeling 
that abstract art was missing something—depth of meaning, 
perhaps—behind those abstractions. It was while taking multi-
dimensional calculus with Professor Montserrat Teixidor i Bigas 
that I realized the solution might lie in theoretical math, and 
immediately switched majors. In essence, I studied mathematics 
in order to make art.

Although some students have told me they chose to major 
in math after seeing my work, you don’t have to know math to 
appreciate my paintings and drawings. The point of my art isn’t 
to teach math, any more than the point of Gauguin’s Tahitian 
paintings was to teach people about Tahiti. Like Gauguin, I’m 
transfixed by the beauty of the world I find myself in, and can’t 
help but represent, in my own idiosyncratic way, my experience 
of it. If my work should inspire somebody to make the arduous 
voyage into the world of math, then I’m doubly happy.

MAPPING  REALITY

1  SURPRISED AGAIN ON THE DIAGONAL
2002, oil on canvas, 72 × 66 in
Permanent Collection, Butler Institute of American Art

Here I refer to a famous theorem known as the uncountability of 
the real numbers, proved by the German mathematician Georg 
Cantor in 1891. Cantor showed that the set of real numbers, 
which include all the numbers we use in daily life, cannot be 
counted even given infinite time. The theorem marked a turning 
point in math and logic: there were now at least two infinities—
the countable and the uncountable. Cantor went on to show 
that there are an infinity of infinities. His proof introduced a 
powerful tool known as Cantor’s Diagonal Argument. He started 
with a list of all real numbers. Then, following a diagonal line 
down the list and changing each digit along it, he produced a 
number that couldn’t possibly be in the list, proving the real 
numbers’ uncountability. The orange squares represent those 
diagonal digits.

An artist-mathematician illuminates a world of infinite beauty  
ARTWORKS AND TEXT BY LUN-YI TSAI, A92
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PROOF BY PICTURE [1–3]

Each of these paintings embodies the basic ideas 
or steps in the proof of a major mathematical 
statement: 1) the uncountability of real numbers, 
2) Urysohn’s Lemma, and 3) Euclid’s proof of the 
Pythagorean Theorem. Depending on your knowl-
edge of math, the proof will either reveal itself or 
remain to be taken on faith.

CONCEPTS [4–6]

These works explore facets of a single profound concept, 
parameterization, which has to do with specifying a quantity 
that, when changed, gives rise to different kinds of things. 
When my Tufts math professor Loring Tu saw my painting 
Some Quadric Surfaces (6), he gave me the idea of show-
ing how the different surfaces could be created by varying 
a single parameter of a single equation. Several series of 
artworks about parameterization have followed.

5  QUADRIC PARAMETERIZATION I
2006, charcoal and graphite on paper, 42 × 71 in

When I look at this piece, I remember the parameterization, but more 
strongly I remember the late afternoon light in the New York City 
neighborhood of my childhood. In the summertime, I would sit on the fire 
escape outside my window and watch the light fade on the New Museum 
of Contemporary Art. I took a lot of black-and-white photos of buildings 
and empty streets. When I began to work in charcoal again several 
years ago, I was surprised by the nostalgic force of the drawings.

3  CHANGE
2008, encaustic on plywood, 41½ x 38½ in

This is Euclid’s proof of Pythagoras’s theorem (in a right 
triangle, the square of the hypotenuse equals the sum of the 
squares of the other two sides). I painted it just before the 
2008 presidential elections—hence the face of Barack Obama. 
I also embedded newspaper clippings I had found from 1954, 
which made me wonder what people back then would have 
thought if they were told that in fifty-four years a woman and 
a black man would be running for the nation’s highest office. 
I thought it would be interesting to include the clippings in a 
painting representing an eternal mathematical truth.

2  MICHELLE’S MATH LESSON
2004, mixed media on canvas, 48 × 48 in

For several months, this canvas served as a 
“blackboard” for my wife, Michelle. I would 
give her a math lesson each time she came to 
my studio, and then I would cover her lesson 
with a slightly transparent layer of white paint. 
There are at least a dozen lessons hidden 
beneath the surface, making this one of my 
heaviest canvases for its size.

The lesson at the surface is about a theorem 
from the area of math known as topology, 
which studies the notions of closeness and 
continuity. The proof of the theorem, using a 
tool called Urysohn’s Lemma (its discoverer, 
Pavel Urysohn, was an early-twentieth-century 
Russian mathematician who drowned at the 
age of 26), is, to me, visually exciting. The 
math is complicated, but its graphic depiction 
isn’t. You begin with two disjoint curves and 
then draw loops around them in a prescribed 
manner, with the idea that the process goes 
on to infinity. I decided to float this picture 
over Michelle’s notes about the proof.

4  WHITNEY FAMILY
2008, charcoal and graphite on paper, 39 × 39 in

The Whitney Umbrella, a topological surface named for the 
American mathematician Hassler Whitney, can be thought 
of as a plane that is cut along a ray and glued back in such 
a way that it intersects with itself in three dimensions.   This 
parameterization creates a stack of umbrellas sitting on 
their sides.
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6  SOME QUADRIC SURFACES
2004, mixed media on board, 48 × 24 in

At the age of three or four, I had disturbing dreams where I was floating 
in dark space and a curved white surface would appear, a different 
shape each time. It would begin small and grow until it was huge enough 
to crush me. Then I would cry out in my sleep. This painting recalls a 
wonderful semester with Professor Teixidor when I conquered my fear 
of smooth surfaces, realizing I could study them with mathematical 
tools (the gradient and multiple integrals, for example). In the process, 
I discovered the beauty and excitement of doing math. Although 
each surface comes from the same kind of equation, I painted each 
as a separate entity. Professor Tu’s suggestion that I look for the 
parameterization was the flash of light that made me see all these 
surfaces as a connected whole.

9  RIEMANN’S INTEGRAL
2004, mixed media on canvas, 39½ × 39½ in

One of the great mathematical achievements of ancient 
times was Archimedes’ discovery of the volume of 
a sphere, which anticipated calculus by almost two 
thousand years. With calculus, we can figure out the 
areas and volumes of all sorts of geometric objects. We 
do this by finding a certain limit called the integral, first 
rigorously formulated by Bernhard Riemann. (The limit is 
the fundamental tool that allows us to do calculations 
with infinitely small quantities.) Essentially, the integral 
is the sum of the areas of infinitely many, infinitely thin 
vertical rectangles under a curve. (The Greek letter 
sigma, ∑ , which can be seen at the center under the 
surface, represents “sum.”) One can find the area 
between two curves, as I’ve shown in this painting, by 
subtracting the integral of the lower curve from that of 
the upper curve. The blue and green rectangles show an 
approximation of this area between the two curves.

7  THE HOPF FIBRATION
2007, charcoal and graphite on paper 42 × 60 in

When I learned about the imaginary number i = √−1 in high 
school (it’s imaginary because there is no real number that, 
multiplied by itself, equals −1), I thought it sounded rather 
mysterious. Later, when I learned more about imaginary 
numbers, I realized how fascinating they are. Just as you can 
think of real numbers as sitting on a line, you can think of 
complex numbers as sitting on a two-dimensional plane. When 
you multiply real numbers together, they move along the line, 
but when you multiply complex numbers, they spin around the 
origin (the intersection of the x- and y- axes).

This drawing shows a three-dimensional sphere as seen 
through a function called the Hopf Fibration, which shows 
the connection between it and a two-dimensional sphere. An 
ordinary sphere—the surface of a ball—is a two-dimensional 
structure that sits in three-dimensional space. A three-
dimensional sphere is an object that sits in four-dimensional 
space. Since most of us can’t see in four dimensions, the best 
we can do is see its intersection with three dimensions, similar 
to looking at flat slices of a 3D object in a CT scan. Obviously, a 
three-dimensional sphere is a very strange object indeed.

8  NEWTON BY THE SEA or THE TOPOLOGIST’S SINE CURVE
2004, mixed media on board, 24 × 48 in

Working on this painting, I thought of the beach in summertime—the sky, the sea, the sand, the children 
picking up shells and pebbles as they examine the universe, and of course the rolling waves. The natural, 
periodic behavior of ocean waves is modeled by the sine curve. The topologist’s sine curve is quite different. 
Near the origin—the intersection of the x and y axes—the wave wiggles around like crazy, whether 
approaching from the left or the right.

OBJECTS [7–9]

Certain mathematical objects have remarkable 
qualities that separate them from an infinity of other 
objects: in one way or another, they differentiate 
subtle concepts, delineate what is or is not possible, 
and provide a means to see things both literally and 
figuratively.

To view slide shows narrated by Lun-Yi 
Tsai, visit go.tufts.edu/lunyitsai.
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if there’s one thing we know about scientists, 

it is that they view the world with an icy logic, pret-

ty much like Spock. They shouldn’t be confused 

with those other carbon-based units, artists—who 

are irrational and fl ighty, not above lopping off an 

earlobe to make a point. These are stereotypes, of 

course, and they completely evaporate the minute 

you meet someone like Lun-Yi Tsai.

Tsai, A92, author of our cover story, majored in mathematics—the queen of sci-

ences, it is often called—and teaches math at Miami Dade College. But he is also an 

artist. Art is not just his way of unwinding after a hard day of solving Fermat’s Last 

Theorem. For him, math and art go hand in hand, the math inspiring the art and the 

art deepening Tsai’s understanding of the math. Tsai’s work is proof that great things 

happen when art meets science.

The epitome of the artist-scientist is probably Leonardo DaVinci. With the same 

skills he employed to create the world’s most famous painting, he sketched his scien-

tifi c observations and worked out his many inventions. Surely there is an important 

message encrypted in the graceful brown-ink drawings that fi ll his notebooks.

Galileo got it. A master of perspective and chiaroscuro drawing, he was admitted 

to the Florentine Academy of Design. It may not be coincidental that in 1609, when he 

trained his telescope on the moon, he recognized its blotches as the shadows of craters 

and mountains. Thomas Harriot, an English contemporary who was, shall we say, ar-

tistically challenged, saw only a “strange spottednesse.” And let us not forget Darwin, 

Audubon, and Tufts’ own David M. Carroll, SMFA65, the naturalist whose striking 

wildlife images graced our Winter 2007 issue. They all got DaVinci’s message.

Deborah Digges got it, too. She was a poet, not a scientist (she is the subject of 

“Fugitive Soul,” page 22)—but she was also an accomplished artist, trained in medical 

illustration. The fl ora and fauna that inhabit her poetry are as precisely and vividly 

depicted as if she had drawn us a picture. She knew how to look at the world.

Art, after all, is as much about seeing and understanding as it is about creating. 

These skills are too important to be hoarded by artists. When we say scientists must 

do science and artists must do art, we arbitrarily limit ourselves, like dogs trained to 

mind an invisible fence. Lun-Yi Tsai ignored the fence, cracking the DaVinci code in 

the process. And the DaVinci code says this: if you value science, study art.

The New Tufts University Homepage. It’s still www.tufts.edu, but we’ve redesigned it 

from top to bottom. You’re going to love it! 

Tufts Prints Green
Printed on recycled paper by Lane 
Press, Inc., South Burlington, VT
Please recycle.

02_Tufts_FA09  9/10/09  9:54 PM  Page 2



  f a l l  2 0 0 9   t u f ts  m ag a z i n e   3

CONTRIBUTORS

PHOTO: BRAD PARIS (WISNER)

HERB BRODY (“A New Twist on Hered-
ity,” page 12) is a Boston-area science 
and technology journalist. He has been 
editor in chief of MIT’s Lincoln Labora-
tory Journal and an editor of MIT’s Tech-
nology Review.

JULIE FLAHERTY (“Force of Habit,” page 
8) is a senior health sciences writer in 
Tufts’ Offi ce of Publications and the edi-
tor of Tufts Nutrition magazine. She has 
been a frequent contributor to the New 
York Times.

REBECCA KAISER GIBSON (“Fugitive 
Soul,” page 22), a lecturer in English and 
a widely published poet, has been award-
ed an Artist Fellowship in Poetry from 
the Massachusetts Cultural Council and 
been nominated for a Pushcart Prize. 

THOMAS M. HART, A68, A05P (“Before 
YouTube: S-Tube,” page 80), is a Vietnam 

veteran who is self-employed after a ca-
reer with the U.S. Treasury. He has a 
lifelong interest in technology and is 
currently attempting to master the Linux 
operating system.

A Tisch College senior fellow as well as 
a contributing writer to CommonWealth 
magazine, PHIL PRIMACK, A70 (“Edwin 
Ginn and the Case for Peace,” page 36), 
is a journalist, editor, and policy ana-
lyst whose articles have appeared in 
the New York Times, the Boston Globe, 
Columbia Journalism Review, and the 
Washington Post. 

HELENE RAGOVIN  (“No Vin Before 
Its Time,” page 10) is a senior writer in 
Tufts’ Offi ce of Publications. In her print 
newspaper days, she was recognized for 

editorial and column writing by the New 
Jersey Press Association.

ROBERT J. STERNBERG (“Liars, Cheats, 
and Scoundrels . . . and What to Do 
About Them,” page 28) is a professor 
of psychology and dean of the School 
of Arts and Sciences. He is also a fellow 
of the American Academy of Arts and 
Sciences, as well as president-elect of the 
International Association for Cognitive 
Education and Psychology. 

Born in Cambridge, Massachusetts, 
LUN-YI TSAI, A92 (“Mapping Reality,” 
page 16), grew up in Paris, where his fa-
ther, a kinetic sculptor, had a studio, and 
in New York City’s SoHo. After Tufts, he 
received a master’s in mathematics from 
the University of Pittsburgh and spent 
six years living, working, and making art 
in China. In 2008, he was a Karl Hofer 
Gesellschaft artist in residence in Berlin.

FRANZ WISNER, A88 (“The Wonder 
Year,” page 32), is the author of Honey-
moon with My Brother, the true story of 
how he was dumped at the altar and then 
decided to take a two-year honeymoon 
to fi fty-three countries with his younger 
brother, Kurt. His latest book is How the 
World Makes Love, for which he trav-
eled the globe documenting the state of 
romance. 

columnists
One of the world’s leading animal behaviorists, NICHOLAS DODMAN (“Animal 
Instincts,” page 41) directs the Animal Behavior Program at the Cummings School of 
Veterinary Medicine and is the author of four bestsellers in the fi eld. His latest book 
is The Well-Adjusted Dog: Dr. Dodman’s Seven Steps to Lifelong Health and Happiness 
for Your Best Friend (Houghton Miffl in).

In his forty-fi ve years at Tufts, SOL GITTLEMAN (“Scholar at Large,” page 40) has been 
a professor of German, Judaic studies, and Biblical literature, and has taught in a vari-
ety of departments. Formerly Tufts’ provost and chair of the Department of German, 
Slavic, and Asian Languages, he is now the Alice and Nathan Gantcher University 
Professor. His most recent book is on the 1949–1953 New York Yankees.

JESWALD W. SALACUSE (“Negotiating Life,” page 42) is the Henry J. Braker Professor 
of Law and former dean of the Fletcher School at Tufts. His most recent book is Seven 
Secrets for Negotiating with Government (AMACOM).
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